word-vectors
Release 4.0.0

Brian Lester

Jun 27, 2020

CONTENTS:

1 Using pip

2 From source

2.1 Local Development. i e e e e e e e e e e
2.2 Buildingthe Docs e
3 API
3.1 WOIrd_VECIOTS & . v v o v o e
3.2 word_vectors.read e e e e e e e e e e e e e
3.3 WOrd_VECLOIS.WIILE v v v v v e e e e e e e e e e e e e e
3.4 word_VECtOIS.CONVETL v v v v o e e e e e e e e e e e e e
3.5 word_vectors.utils L L e e e e e e e

4 Getting Help

5 Word Vectors

5.1 What are Word Vectors? o e e e e e e e e
5.2 Supported File Formats e e
5.3 Usage e e e e
54 Indicesandtables L e e
Python Module Index
Index

19

21
21
22
23
27

29

31

CHAPTER
ONE

USING PIP

PyPI install with pip:

pip install word-vectors

word-vectors, Release 4.0.0

2 Chapter 1. Using pip

CHAPTER
TWO

FROM SOURCE

To install from the source, clone the github repository and install with pip.

git clone https://github.com/blesterl25/word-vectors.get
cd word-vectors
pip install

2.1 Local Development

If you want to install the package and run tests install the optional testing dependencies.

’pip install . [test]

Run the tests with pytest.

’pytest

Set up pre—commit hooks to autoformat your changes with black.

pip install pre-commit
pre-commit install

2.2 Building the Docs

To build the documentation locally install the documentation requirements and run make.

pip install -r requirements-docs.txt
cd docs

make html

open build/html/index.html

https://black.readthedocs.io/en/stable

word-vectors, Release 4.0.0

4 Chapter 2. From source

CHAPTER
THREE

API

3.1 word_vectors

Read, Write, and Convert between different word vector serialization formats.

word_vectors.Vocab = typing.Dict[str, int]

A mapping of word to integer index. This index is used pull the this words vector from the matrix of word
vectors.

word_vectors.Vectors = <class 'numpy.ndarray'>
The actual word vectors. These are always of rank 2 and have the shape [vocab size, vector size]

class word_vectors.FileType (value)
An Enumeration of the Word Vector file types supported.

GLOVE = 'glove'
The format used by Glove. See read_glove () for a description of file format and common pre-trained
embeddings that use this format.

W2V_TEXT = 'w2v-text'
The text format introduced by Word2Vec. See read_w2v_text () for a description of the file format
and common pre-trained embeddings that use this format.

W2V = 'w2v'
The binary format used by Word2Vec and pre-trained GoogleNews vectors. See read w2v () for a
description of the file format and common pre-trained embeddings that use this format.

LEADER = 'leader'
Our new Leader file format. See read_leader () for a description of the file format.

FASTTEXT = 'w2v-text'

The file format used to distribute FastText vectors, it is just the word2vec text format. See
read_w2v_text () for a description of the file format.

NUMBERBATCH = 'w2v-text'
The file format used to distribute Numberbatch vectors, it is just the word2vec text format. See
read_w2v_text () for a description of the file format.

classmethod from string (value)
Convert a string into the Enum value.

Parameters value (str)— The string specifying the file type.
Returns The Enum value parsed from the string.
Raises ValueError — If the string wasn’t able to be parsed into an Enum value.

Return type word_vectors.FileType

word-vectors, Release 4.0.0

word_vectors.INT SIZE = 4
The size of an int32 in bytes used when reading binary files.

word_vectors.FLOAT_SIZE = 4
The size of a float32 in bytes when reading a binary file.

word_vectors.LONG_SIZE = 8
The size of an int64 in bytes when reading binary files.

word_vectors.LEADER HEADER = 3
The number of elements in the Leader format header.

word_vectors.LEADER MAGIC NUMBER = 38941
A magic number used to identify a Leader format file.

3.2 word vectors.read

Read word vectors from a file.

We provide a main read () function for reading vectors from a file. The serialization format can be explicitly provided
with by passing a F'i 1e Type or automatically inferred using sni £ (). There are also several provided convenience
functions for reading from specific formats.

word_vectors.read.read (f, file_type=None)
Read vectors from a file.

This function can dispatch to one of the following word vector format readers:
e read _glove ()
* read _w2v_text ()
e read w2v ()
e read leader ()

Check the documentation of a specific reader to see a description of the file format as well as common pre-trained
vectors that ship with this format.

Note: In the case of duplicated words in the saved vectors we use the index and associated vector from the first
occurrence of the word.

Note: Without a specified file type this function uses word _vectors.read.sniff () to determine the
word vector format and dispatches to the appropriate reader.

I'haven’t seen a sniffing failure but if your file type can’t be determined you can pass the £ile_type explicitly
or call the specific reading function yourself.

Parameters
e £f(Union[str, TextIO, BinaryIO])- The file to read from.

 file_type (Optional [word_vectors.FileType]) — The vector file format. If
None the file is sniffed to determine format.

6 Chapter 3. API

word-vectors, Release 4.0.0

Returns The vocab and vectors. The vocab is a mapping from word to integer and vectors are a
numpy array of shape [vocab size, vector size]. The vocab gives the index offset
into the vector matrix for some word.

Return type Tuple[Dict[str, int], numpy.ndarray]
word_vectors.read.read_with_vocab (f, user_vocab, initializer=<function uni-

Sform_initializer.<locals>._unif_initializer>,

keep_extra=False, file_type=None)
Read vectors from a file subject user provided vocabulary constraints.

This function can dispatch to one of the following word vector format readers:
e read _glove_with_vocab()
* read_w2v_text_with_vocab ()
e read w2v_with vocab()
* read _leader_with_vocab/()

Check the documentation of a specific reader to see a description of the file format as well as common pre-trained
vectors that ship with this format.

When provided a vocabulary this function will not reorder it. If you pass in that the word dog is index 12 then
in the resulting vocabulary it will still be index 12.

When collecting extra vocabulary (words that are in the pre-trained embeddings but not in the user vocab) these
will all be at the end of the vocabulary. Again the indices of user provided words will not change.

Note: In the case of duplicated words in the saved vectors we use the index and associated vector from the first
occurrence of the word.

Note: Without a specified file type this function uses word_vectors.read.sniff () to determine the
word vector format and dispatches to the appropriate reader.

I haven’t seen a sniffing failure but if your file type can’t be determined you can pass the £ile_type explicitly
or call the specific reading function yourself.

Parameters
e £f(Union[str, IO])- The fileto read from.

* user_vocab (Dict[str, int]) — A specific vocabulary the user wants to extract
form the pre-trained embeddings.

e initializer (Callable[[int], numpy.ndarray])— A function that takes the
vector size and generates a new vector. this is used to generate a representation for a word
in the user vocab that is not in the pre-train embeddings.

* keep_extra (bool) - Should you also include vectors that are in the pre-trained embed-
ding but not in the user provided vocab?

 file_type (Optional [word_vectors.FileType]) — The vector file format. If
None the file is sniffed to determine format.

Returns The vocab and vectors. The vocab is a mapping from word to integer and vectors are a
numpy array of shape [vocab size, vector size]. The vocab gives the index offset
into the vector matrix for some word.

3.2. word_vectors.read 7

word-vectors, Release 4.0.0

Return type Tuple[Dict[str, int], numpy.ndarray]

word_vectors.read.read_glove (f)

Read vectors from a glove file.

The GloVe format is a pure text format. Each (word, vector) pair is represented by a single line in the file.
The line starts with the word, a space, and then the float32 text representations of the elements in the vector
associated with that word. Each of these vector elements are also separated with a space.

The main vectors distributed in this format are the GloVe vectors (Pennington, et. al., 2014)

Note: In the case of duplicated words in the saved vectors we use the index and associated vector from the first
occurrence of the word.

Parameters £ (Union[str, TextIO])- The file toread from

Returns The vocab and vectors. The vocab is a mapping from word to integer and vectors are a
numpy array of shape [vocab size, vector size]. The vocab gives the index offset
into the vector matrix for some word.

Return type Tuple[Dict[str, int], numpy.ndarray]

word_vectors.read.read_glove_with_vocab (f, user_vocab, initializer=<function uni-

form_initializer.<locals>._unif_initializer>,
keep_extra=False)
Read vectors from a glove file subject to user vocabulary constraints.

See read_glove () for adescription of the file format and common pre-train embeddings that use this format.

When provided a vocabulary this function will not reorder it. If you pass in that the word dog is index 12 then
in the resulting vocabulary it will still be index 12.

When collecting extra vocabulary (words that are in the pre-trained embeddings but not in the user vocab) these
will all be at the end of the vocabulary. Again the indices of user provided words will not change.

Note: In the case of duplicated words in the saved vectors we use the index and associated vector from the first
occurrence of the word.

Parameters
e £f(Union[str, TextIO])- The fileto read from.

* user_vocab (Dict[str, int]) — A specific vocabulary the user wants to extract
form the pre-trained embeddings.

e initializer (Callable[[int], numpy.ndarray])— A function that takes the
vector size and generates a new vector. this is used to generate a representation for a word
in the user vocab that is not in the pre-train embeddings.

* keep_extra (bool) - Should you also include vectors that are in the pre-trained embed-
ding but not in the user provided vocab?

Returns The vocab and vectors. The vocab is a mapping from word to integer and vectors are a
numpy array of shape [vocab size, vector size]. The vocab gives the index offset
into the vector matrix for some word.

Return type Tuple[Dict[str, int], numpy.ndarray]

Chapter 3. API

https://nlp.stanford.edu/projects/glove/
https://www.aclweb.org/anthology/D14-1162/

word-vectors, Release 4.0.0

word_vectors.read.read_w2v_text (f)
Read vectors from a text based w2v file.

One of two different vector serialization formats introduced in the word2vec software (Mikolov, et. al., 2013).

The word2vec text format is a pure text format. The first line is two integers, represented as text and separated
by a space, that specify the number of types in the vocabulary and the size of the word vectors respectively.
Each following line represents a (word, vector) pair. The line stars with the word, a space, and then the float 32
text representations of the elements in the vector associated with that word. Each of these vector elements are
also separated with a space.

One can see that that this is actually the same as the G1oVe format except that in GloVe they removed the
header line.

The main embeddings distributed in this format are FastText (Bojanowski, et. al., 2017) and NumberBatch
(Speer, et. al., 2017)

Note: In the case of duplicated words in the saved vectors we use the index and associated vector from the first
occurrence of the word.

Parameters £ (Union[str, TextIO])- The file to read from

Returns The vocab and vectors. The vocab is a mapping from word to integer and vectors are a
numpy array of shape [vocab size, vector size]. The vocab gives the index offset
into the vector matrix for some word.

Return type Tuple[Dict[str, int], numpy.ndarray]

word_vectors.read.read_w2v_text_with_vocab (f, user_vocab, initializer=<function uni-
form_initializer.<locals>._unif_initializer>,

keep_extra=False)
Read vectors from a Word2Vec text file subject to user vocabulary constraints.

See read_w2v_text () for a description of the file format and common pre-train embeddings that use this
format.

When provided a vocabulary this function will not reorder it. If you pass in that the word dog is index 12 then
in the resulting vocabulary it will still be index 12.

When collecting extra vocabulary (words that are in the pre-trained embeddings but not in the user vocab) these
will all be at the end of the vocabulary. Again the indices of user provided words will not change.

Note: In the case of duplicated words in the saved vectors we use the index and associated vector from the first
occurrence of the word.

Parameters
e £f(Union[str, TextIO])- The fileto read from.

* user_vocab (Dict[str, int])— A specific vocabulary the user wants to extract
form the pre-trained embeddings.

e initializer (Callable[[int], numpy.ndarray])- A function that takes the
vector size and generates a new vector. this is used to generate a representation for a word
in the user vocab that is not in the pre-train embeddings.

* keep_extra (bool) - Should you also include vectors that are in the pre-trained embed-
ding but not in the user provided vocab?

3.2. word_vectors.read 9

https://code.google.com/archive/p/word2vec/
https://papers.nips.cc/paper/5021-distributed-representations-of-words-and-phrases-and-their-compositionality
https://fasttext.cc/
https://www.aclweb.org/anthology/Q17-1010/
https://github.com/commonsense/conceptnet-numberbatch
https://aaai.org/ocs/index.php/AAAI/AAAI17/paper/view/14972

word-vectors, Release 4.0.0

Returns The vocab and vectors. The vocab is a mapping from word to integer and vectors are a
numpy array of shape [vocab size, vector size]. The vocab gives the index offset
into the vector matrix for some word.

Return type Tuple[Dict[str, int], numpy.ndarray]

word_vectors.read.read_w2v (f)

Read vectors from a word2vec file.
One of two different vector serialization formats introduced in the word2vec software (Mikolov, et. al., 2013).

The word2vec binary format is a mix of textual an binary representations. The first line is two integers (as
text, separated be a space) representing the number of types in the vocabulary and the size of the word vectors
respectively. (word, vector) pairs follow. The word is represented as text and a space. After the space each
element of a vector is represented as a binary float32.

The most well-known pre-trained embeddings distributed in this format are the GoogleNews vectors.

Note: There is no formal definition of this file format, the only definitive reference on it is the original imple-
mentation in the word2vec software

Due to the lack of a definition (and no special handling of it in the code) there is no explicit statements about
the endianness of the binary representations. Most code just uses the numpy . from_buffer and that seems
to work now that most people have little-endian machines. However due to the lack of explicit direction on this
encoding I would advise caution when loading vectors that were trained on big-endian hardware.

Note: In the case of duplicated words in the saved vectors we use the index and associated vector from the first
occurrence of the word.

Parameters £ (Union/[str, BinaryIO])- The fileto read from

Returns The vocab and vectors. The vocab is a mapping from word to integer and vectors are a
numpy array of shape [vocab size, vector size]. The vocab gives the index offset
into the vector matrix for some word.

Return type Tuple[Dict[str, int], numpy.ndarray]

word_vectors.read.read_w2v_with_vocab (f, user_vocab, initializer=<function uni-

form_initializer.<locals>._unif_initializer>,
keep_extra=False)
Read vectors from a Word2Vec file subject to user vocabulary constraints.

See read_w2v () for a description of the file format and common pre-train embeddings that use this format.

When provided a vocabulary this function will not reorder it. If you pass in that the word dog is index 12 then
in the resulting vocabulary it will still be index 12.

When collecting extra vocabulary (words that are in the pre-trained embeddings but not in the user vocab) these
will all be at the end of the vocabulary. Again the indices of user provided words will not change.

Note: In the case of duplicated words in the saved vectors we use the index and associated vector from the first
occurrence of the word.

Parameters

10

Chapter 3. API

https://code.google.com/archive/p/word2vec/
https://papers.nips.cc/paper/5021-distributed-representations-of-words-and-phrases-and-their-compositionality
https://drive.google.com/file/d/0B7XkCwpI5KDYNlNUTTlSS21pQmM/edit
https://code.google.com/archive/p/word2vec/

word-vectors, Release 4.0.0

e £(Union[str, BinaryIO])- The fileto read from.

* user_vocab (Dict[str, int]) — A specific vocabulary the user wants to extract
form the pre-trained embeddings.

e initializer (Callable[[int], numpy.ndarray])— A function that takes the
vector size and generates a new vector. this is used to generate a representation for a word
in the user vocab that is not in the pre-train embeddings.

* keep_extra (bool)— Should you also include vectors that are in the pre-trained embed-
ding but not in the user provided vocab?

Returns The vocab and vectors. The vocab is a mapping from word to integer and vectors are a
numpy array of shape [vocab size, vector size]. The vocab gives the index offset
into the vector matrix for some word.

Return type Tuple[Dict[str, int], numpy.ndarray]
word_vectors.read.read_leader (f)
Read vectors from a leader file.
This is our fully binary vector format.

The first line is a header for the leader format and it is a 3-tuple. The elements of this tuple are: A magic number,
the size of the vocabulary, and the size of the vectors. These numbers are represented as little-endian unsigned
long longs that have a size of 8 bytes.

Following the header there are (length, word, vector) tuples. The length is the length of this particular word
encoded as a little-endian unsigned integer. The word is stored as ut £-8 bytes. After the word the vector is
stored where each element is a little-endian float32 (4 bytes).

Note: In the case of duplicated words in the saved vectors we use the index and associated vector from the first
occurrence of the word.

Parameters £ (Union[str, BinaryIO])- The fileto read from
Returns The vocab and vectors.
Return type Tuple[Dict[str, int], numpy.ndarray]
word_vectors.read.read_leader_ with_vocab (f, user_vocab, initializer=<function uni-
form_initializer.<locals>._unif_initializer>,

keep_extra=False)
Read vectors from a Leader file subject to user vocabulary constraints.

See read_leader () for a description of the file format and common pre-train embeddings that use this
format.

When provided a vocabulary this function will not reorder it. If you pass in that the word dog is index 12 then
in the resulting vocabulary it will still be index 12.

When collecting extra vocabulary (words that are in the pre-trained embeddings but not in the user vocab) these
will all be at the end of the vocabulary. Again the indices of user provided words will not change.

Note: In the case of duplicated words in the saved vectors we use the index and associated vector from the first
occurrence of the word.

Parameters

3.2. word_vectors.read 11

word-vectors, Release 4.0.0

e £(Union[str, BinaryIO])- The fileto read from.

* user_vocab (Dict[str, int]) — A specific vocabulary the user wants to extract
form the pre-trained embeddings.

e initializer (Callable[[int], numpy.ndarray])— A function that takes the
vector size and generates a new vector. this is used to generate a representation for a word
in the user vocab that is not in the pre-train embeddings.

* keep_extra (bool)— Should you also include vectors that are in the pre-trained embed-
ding but not in the user provided vocab?

Returns The vocab and vectors. The vocab is a mapping from word to integer and vectors are a
numpy array of shape [vocab size, vector size]. The vocab gives the index offset
into the vector matrix for some word.

Return type Tuple[Dict[str, int], numpy.ndarray]
word_vectors.read.sniff (f, buf size=1024)
Figure out what kind of vector file it is.
Parameters
» £f(Union[str, TextIO])- The file we are sniffing.
* buf_size (int)— How many bytes to read in when sniffing the file.
Returns The guessed file type.
Return type word_vectors.FileType

word_vectors.read.read_leader_ header (buf)
Read the header from the leader file.

The header for the leader format is a 3-tuple. The elements of this tuple are: A magic number, the size of the
vocabulary, and the size of the vectors. These numbers are represented as little-endian unsigned long longs that
have a size of 8 bytes.

Note: The magic number if used to make sure this is can actual file and not just trying to extract word vectors
from a random binary file. The Magic Number is 38941.

Parameters buf (bytes)— The beginning of the file we are reading the header from.
Returns The vocab size, the vector size, and the maximum length of any of the words
Raises ValueError - If the magic number doesn’t match.
Return type Tuplel[int, int]
word_vectors.read.verify_ leader (buf)
Check if a file is in the leader format by comparing the magic number.
Parameters
* buf (bytes) — The beginning of the file we are trying to determine if the it
* a Leader formatted file. (is)-
Returns True if the magic number matched, False otherwise.

Return type bool

12 Chapter 3. API

word-vectors, Release 4.0.0

3.3 word_vectors.write

Write Word Vectors to a file.

We provide the main write () function that can write to various vector serialization formats based on the passed
FileType. There are also several convenience functions for writing specific formats.

word_vectors.write.write (wf, vocab, vectors, file_type, max_len=None)
Write word vectors to a file.

This function dispatches to on of the following word vector format writers based on the file of file_type.
e write_glove()
* write w2v_text ()
e write w2v ()

s write leader ()

Parameters
* wf (Union[str, IO0])-The file we are writing to.

* vocab (Union([Dict[str, int], Iterable[str]]) — The vocab mapping
words -> ints.

* vectors (numpy.ndarray)— The vectors as a np.ndarray.

e file_type (word_vectors.FileType) — The format to use when writing the vec-
tors to disk.

* max_len (Optional [int]) — The maximum length of a word in vocab. Only used
when writing Leader vectors.

Raises ValueError - If the an unsupported file type is passed
word_vectors.write.write_glove (wf, vocab, vectors)
Write vectors to a glove file.

See word vectors.read.read _glove () for a description of the file format and examples of common
pre-trained embeddings that use this format.

Parameters
* wf (Union[str, TextIO])-The file we are writing to

e vocab (Union[Dict[str, int], Iterable[str]]) - The vocab of words ->
ints.

* vectors (numpy.ndarray)— The vectors as a np.ndarray.

word_vectors.write.write_w2v_text (wf, vocab, vectors)
Write vectors in the word2vec format in a text file.

See word _vectors.read.read w2v_text () for a description of the file format and examples of com-
mon pre-trained embeddings that use this format.

Parameters
* wf (Union[str, TextIO])- The file we are writing to

e vocab (Union[Dict[str, int], Iterable[str]]) - The vocab of words ->
ints

3.3. word_vectors.write 13

word-vectors, Release 4.0.0

* vectors (numpy.ndarray)— The vectors we are writing

word_vectors.write.write_w2v (wf, vocab, vectors)
Write vectors to the word2vec format as a binary file.

See word _vectors.read.read_w2v () for a description of the file format and examples of common
pre-trained embeddings that use this format.

Parameters
* wf (Union[str, BinaryIO])- The file we are writing to

e vocab (Union[Dict [str, int], Iterable[str]]) - The vocab of words ->
ints.

* vectors (numpy.ndarray)— The vectors as a np.ndarray.

word_vectors.write.write_leader (wf, vocab, vectors)
Write vectors to a leader file.

See word_vectors.read.read_leader () for a description of the file format.
Parameters
* wf (Union[str, BinaryIO])-The file we are writing to.

e vocab (Union[Dict [str, int], Iterable[str]]) - The vocab of words ->
ints.

* vectors (numpy.ndarray)— The vectors as a np.ndarray.

* max_len - The longest length of the words as (ut £-8) bytes.

3.4 word vectors.convert

Convert between word vector formats.

We provide the main convert () function for converting between arbitrary formats based on the passed Fi leType
(or by sniffing the input file with sni £ () when not provided) as well as several convenience function for converting
between different pairs of formats.

word_vectors.convert.convert (f, output=None, output_file_type=<FileType. LEADER: 'leader>,
input_file_type=None)
Convert vectors from one format to another.

Parameters
e £f(Union[str, TextIO, BinaryIO])- The file toread from.

* output (Optional [str])— The name for the output file. If not provided we use the
input file name with a modified extension.

* output_file_type (word_vectors.FileType)— The vector serialization format
to use when writing out the vectors.

e input_file type (Optional [word_vectors.FileType])— An explicit vector
format to use when reading.

word_vectors.convert .w2v_to_leader (f, output=None)
Convert binary Word2Vec formatted vectors to the Leader format.

Parameters

e £(Union[str, BinaryIO])- The filetoread from.

14 Chapter 3. API

word-vectors, Release 4.0.0

* output (Optional [str])— The name for the output file. If not provided we use the
input file name with a modified extension.

word_vectors.convert.glove_to_leader (f, output=None)
Convert GloVe formatted vectors to the Leader format.

Parameters
e £f(Union[str, TextIO])- The fileto read from.

* output (Optional[str])— The name for the output file. If not provided we use the
input file name with a modified extension.

word_vectors.convert .w2v_text_to_leader (f, output=None)
Convert text Word2Vec formatted vectors to the Leader format.

Parameters
e £(Union[str, TextIO])- The fileto read from.

* output (Optional [str])— The name for the output file. If not provided we use the
input file name with a modified extension.

word_vectors.convert .w2v_to_w2v_text (f, output=None)
Convert binary Word2Vec formatted vectors to the Binary Word2Vec format.

Parameters
e £(Union[str, BinaryIO])- The fileto read from.

* output (Optional[str])— The name for the output file. If not provided we use the
input file name with a modified extension.

word_vectors.convert .w2v_to_glove (f, output=None)
Convert binary Word2Vec formatted vectors to the GloVe format.

Parameters
e £(Union[str, BinaryIO])- The fileto read from.

* output (Optional [str])— The name for the output file. If not provided we use the
input file name with a modified extension.

word_vectors.convert .w2v_text_to_glove (f, output=None)
Convert text Word2Vec formatted vectors to the Glove format.

Parameters
e £f(Union[str, TextIO])- The fileto read from.

* output (Optional[str])— The name for the output file. If not provided we use the
input file name with a modified extension.

word_vectors.convert .w2v_text_to_w2v (f, output=None)
Convert text Word2Vec formatted vectors to the binary Word2 Vec format.

Parameters
e £(Union[str, TextIO])- The file to read from.

* output (Optional [str])— The name for the output file. If not provided we use the
input file name with a modified extension.

word_vectors.convert.glove_to_w2v (f, output=None)
Convert GloVe formatted vectors to the binary Word2Vec format.

Parameters

3.4. word_vectors.convert 15

word-vectors, Release 4.0.0

e £f(Union[str, TextIO])-The fileto read from.

* output (Optional [str])— The name for the output file. If not provided we use the
input file name with a modified extension.

word_vectors.convert .glove_to_w2v_text (f, output=None)
Convert GloVe formatted vectors to the text Word2Vec format.

Parameters
e £f(Union[str, TextIO])- The fileto read from.

* output (Optional [str])— The name for the output file. If not provided we use the
input file name with a modified extension.

word_vectors.convert.leader_to_w2v (f, output=None)
Convert Leader formatted vectors to the binary Word2Vec format.

Parameters
e £f(Union[str, BinaryIO])- The fileto read from.

* output (Optional [str])— The name for the output file. If not provided we use the
input file name with a modified extension.

word_vectors.convert .leader_to_w2v_text (f, output=None)
Convert Leader formatted vectors to the text Word2Vec format.

Parameters
e £ (Union[str, BinaryIO])- The fileto read from.

* output (Optional [str])— The name for the output file. If not provided we use the
input file name with a modified extension.

word_vectors.convert.leader_to_glove (f, output=None)
Convert Leader formatted vectors to the GloVe format.

Parameters
e £(Union[str, BinaryIO])- The fileto read from.

* output (Optional [str])— The name for the output file. If not provided we use the
input file name with a modified extension.

3.5 word_vectors.utils

Utilities for working with word vector 1/O.

word_vectors.utils.find_space (buf, offset)
Find the first space starting from offset and return word that spans the spaces and the new offset.

Parameters
* buf (bytes) — The bytes buffer we are looking for a space in.
» offset (int)— Where in the buffer we start looking.

Returns A (word, offset) tuple where word is the text (decoded from ut £-8) starting at the original
offset until the first space. Offset is index of the location just after the space we just found.

Return type Tuple([str, int]

16 Chapter 3. API

word-vectors, Release 4.0.0

word_vectors.utils.is_binary (f, block_size=512, ratio=0.3, text_characters=b" !"#3$%&\'()*+,-

/0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\\] “abcdefghijkimnopqr.
Guess if a file is binary or not.

This is based on the implementation from here
Parameters
e £ (Union[str, BinaryIO])- The file we are testing.
* block_size (int)— The amount of the file to read in for checking.
* ratio (float) - How many non-ascii characters before we assume it is binary.

* text_characters (bytes) — Characters that we define as text characters, the ratio of
these characters to others is used to determine if the file was binary or not.

Returns True if the file is binary, False otherwise
Return type bool

word_vectors.utils.bookmark (f)
Bookmark where we are in a file so we can return.

This is a context manager that lets us save our spot in an open file, to some operations on that file, and then
return to the original stop.

This is very useful for things like sniffing a file. If the file is already open and you read in some bytes to estimate
the format you need to remember to reset to the start or else you will get wrong results. This context manager
automates this.

f.tell()

>>> 120

with bookmark (f) :
_ f.read(1024)
print (f.tell())

>>> 1144

f.tell()

>>> 120

Parameters £ (I0)- The file we are bookmarking.
word_vectors.utils.to_vocab (words)
Convert a series of words to a vocab mapping strings to ints.
Parameters words (Iterable[str])— The words in the vocab
Returns The Vocabulary
Return type Dict[str, int]

word_vectors.utils.create_output_path (path, file_type)
Create the output path by stripping the extension and added a new one based on the vector format.

Parameters

* path (Union[str, IO, pathlib.PurePath])— The path to the input file.

* file_type (word_vectors.FileType)— The vector format we are converting to.
Returns The new output path with an extension determined by the file type.

Return type str

3.5. word_vectors.utils 17

https://eli.thegreenplace.net/2011/10/19/perls-guess-if-file-is-text-or-binary-implemented-in-python

word-vectors, Release 4.0.0

word_vectors.utils.uniform_initializer (unif)
Create a vector initialization function that takes a vector size as input.

Parameters unif (fI1oat)— The bounds that the new vector will be initialized within
Returns A function that returns a uniformly random vector between —uni f and uni £,

Return type Callable[[int], numpy.ndarray]

18 Chapter 3. API

CHAPTER
FOUR

GETTING HELP

If you run into trouble be sure to check the issues on github. Please check if someone else was having the same
problem as you but if none of the fixes apply to you feel free to open a new issue.

19

https://github.com/blester125/word-vectors/issues

word-vectors, Release 4.0.0

20 Chapter 4. Getting Help

CHAPTER
FIVE

WORD VECTORS

A fast, light-weight library for reading, writing, and converting between various word vector serialization formats.

» What are Word Vectors?
* Supported File Formats
- GloVe
— Word2Vec
— Leader
* Usage
— Reading
— Writing

— Converting

e Indices and tables

5.1 What are Word Vectors?

Word vectors are low-dimensional, dense representations of words. This sounds very complicated but then you boil it
down is becomes a lot clearer. The it really means that each word is associated with a list of numbers (a vector) that are
used to represent the semantic meaning of that word. There vectors normal range in size from as little as 100 elements
to around 300. It might seem like a stretch to call that “low-dimensional” but these vectors are very small compared
to older methods of vector representations of words. Words used to be encoded as “one-hot” vectors where each word
was given a unique index and the vector was full or zeros except for a one at that index. This results in massive
vectors (each vector is the size of the vocabulary and the vector size scales linearly as the vocabulary grows). The
other problem with this method is that vectors are orthogonal. All none word index elements are zero so when you do
something like a dot product between two vectors you will always get zero. Dense vectors, on the other hand, have a
fixed size (as you add more terms to your vocabulary the vectors stay the same size) and when you take the dot product
of two vectors you get non-zero values. This can be used for tasks like semantic similarity between different words.
For a more complete introduction to word vectors and the algorithms used to crate them check out these lectures from
Stanford.

21

https://pypi.org/project/word-vectors/
https://github.com/blester125/word-vectors/actions
https://word-vectors.readthedocs.io/en/latest/?badge=latest

word-vectors, Release 4.0.0

¢ Word Vectors

¢ Word Vectors and Word Senses

5.2 Supported File Formats

This library supports reading and writing several formats of vector serialization. These formats are often under-
specified and only truly defined by the implementations of the original software than wrote out the vectors. In the next
section we quickly summarize some of the most common file formats.

5.2.1 GloVe

The GloVe format is a pure text format. Each (word, vector) pair is represented by a single line in the file. The line
starts with the word, a space, and then the float32 text representations of the elements in the vector associated with
that word. Each of these vector elements are also separated with a space.

The main vectors distributed in this format are the GloVe vectors (Pennington, et. al., 2014)

5.2.2 Word2Vec

There are two different vector serialization file formats introduced by the word2vec software (Mikolov, et. al., 2013).
One is a pure text format and the other a binary one.

Text

The word2vec text format is a pure text format. The first line is two integers, represented as text and separated by a
space, that specify the number of types in the vocabulary and the size of the word vectors respectively. Each following
line represents a (word, vector) pair. The line stars with the word, a space, and then the float 32 text representations of
the elements in the vector associated with that word. Each of these vector elements are also separated with a space.

One can see that that this is actually the same as the GloVe format except that in GloVe they removed the header line.

The main embeddings distributed in this format are FastText (Bojanowski, et. al., 2017) and NumberBatch (Speer, et.
al., 2017)

Binary

The word2vec binary format is a mix of textual an binary representations. The first line is two integers (as text,
separated be a space) representing the number of types in the vocabulary and the size of the word vectors respectively.
(word, vector) pairs follow. The word is represented as text and a space. After the space each element of a vector is
represented as a binary float32.

The most well-known pre-trained embeddings distributed in this format are the GoogleNews vectors.

Danger: There is no formal definition of this file format, the only definitive reference on it is the original
implementation in the word2vec software

Due to the lack of a definition (and no special handling of it in the code) there is no explicit statements about the
endianess of the binary representations. Most code just uses the numpy . from_buffer and that seems to work
now that most people have little-endian machines. However due to the lack of explicit direction on this encoding I
would advise caution when loading vectors that were trained on big-endian hardware.

22 Chapter 5. Word Vectors

https://www.youtube.com/watch?v=8rXD5-xhemo
https://www.youtube.com/watch?v=kEMJRjEdNzM
https://nlp.stanford.edu/projects/glove/
https://www.aclweb.org/anthology/D14-1162/
https://code.google.com/archive/p/word2vec/
https://papers.nips.cc/paper/5021-distributed-representations-of-words-and-phrases-and-their-compositionality
https://fasttext.cc/
https://www.aclweb.org/anthology/Q17-1010/
https://github.com/commonsense/conceptnet-numberbatch
https://aaai.org/ocs/index.php/AAAI/AAAI17/paper/view/14972
https://aaai.org/ocs/index.php/AAAI/AAAI17/paper/view/14972
https://drive.google.com/file/d/0B7XkCwpI5KDYNlNUTTlSS21pQmM/edit
https://code.google.com/archive/p/word2vec/

word-vectors, Release 4.0.0

5.2.3 Leader

This is our fully binary vector format.

The first line is a header for the leader format and it is a 3-tuple. The elements of this tuple are: A magic number, the
size of the vocabulary, and the size of the vectors. These numbers are represented as little-endian unsigned long longs
that have a size of 8 bytes.

Following the header there are (length, word, vector) tuples. The length is the length of this particular word encoded
as a little-endian unsigned integer. The word is stored as ut £-8 bytes. After the word the vector is stored where each
element is a little-endian float32 (4 bytes).

By tracking the length of the word we can jump directly to the start of them vector instead of having to iterate through
the word like we do in the word2vec binary format.

Note: The magic number if used to make sure this is can actual file and not just trying to extract word vectors from a
random binary file. The Magic Number is 3894 1.

Note: One of the downsides of this format is that it is harder to inspect the file to see information like
the vocabulary size or the vector size. Unlink the Word2Vec format the header is not text so a simple
head -n 1 embedding-file will NOT work. Instead you can use od -1 —--endian=little -N 24
embedding-file and you should see the magic number, the vocabulary size, the vector size, and the max length
of the tokens (as ut £-8 bytes).

A note on the Senna format: There is an older format of embeddings called Senna embeddings (Collobert, et. al.,
2011). The format actually uses two files. There is a vocabulary file where each line has a single word and an vector
file where each line has the text representations of the float32 elements in a vector separated by a space. These files
are aligned so that the word on line i of the word file is represented by the vector on line i of the vector file. Due
to the mismatch in API supporting this format would cause (requiring two file rather than just one) we have decided
not to provide reading utilities for this format. Luckily the conversion of this format into the GloVe format is a single
paste command.

’paste -d" " /path/to/word/file.senna /path/to/vector/file.senna > word_vectors.glove

5.3 Usage

While these vector formats are not very complex it is annoying to have to write code to read them in for each project.
This causes a lot of people to pull in pretty large libraries just to use the vector reading functionality. The problem
with this (beside the heavy dependency) is that these libraries tend to return the vocabulary and vectors within some
complex, library specific class. There is often a lot of utility to be gained from these classes when you are actually
using the rest of the library but when all you care about is reading in the vectors this is a hindrance.

We designed this library to fix both of these at once. The library is small and focused. You won’t be pulling in a lot of
code that does (really cool) things you will never touch. We also return results using the simplest formats possible for
maximum flexibility.

The main data structure that people conceptually think about when working with word vectors is a mapping for word
to vector. This is natural to represent as a python dictionary. This isn’t the format that people actually use however.
Having many single vectors inside of a dictionary is less space efficient and harder to work with than a single large
matrix the vectors stacked on one another. When using this format the data structure that comes to mind is an pair of
associated arrays. The word at index i in one array is associated with the vector at index i in the other. The main use

5.3. Usage 23

https://ronan.collobert.com/senna/
http://ronan.collobert.com/pub/matos/2011_nlp_jmlr.pdf
http://ronan.collobert.com/pub/matos/2011_nlp_jmlr.pdf

word-vectors, Release 4.0.0

case is a look up from word to vector however so instead of storing an actual list of words we use a dictionary mapping
words to integers. These integers can then be used to look up the vector in the dense matrix.

Our vocabulary is simply Dict [str, int] and our vectors type is just a np.ndarray of size [number of
words in vocab, size of vector].

These simple datatypes give us a lot of flexibility downstream. First we read in the vocabulary and vectors from a file.

>>> from word vectors import read

>>> v, wv = read("/home/blester/embeddings/glove-6B.100d")
>>> len (v)

400000

>>> wv.shape

(400000, 50)

Then we can lookup a single word by getting its index in the vocabulary and pulling the vector from the matrix.

>>> wv[v
array ([

[’ "11
4. lSOOe 01, 2.4968e-01, -4.1242e-01, 1.2170e-01, 3.4527e-01,
-4.4457e-02, -4.9688e-01, -1.7862e-01, -6.6023e-04, -6.5660e-01,
2.7843e-01, -1.4767e-01, -5.5677e-01, 1.4658e-01, -9.5095e-03,
1.1658e-02, 1.0204e-01, -1.2792e-01, -8.4430e-01, -1.2181le-01,
-1.6801e-02, -3.3279e-01, -1.5520e-01, -2.3131e-01, -1.9181e-01,
-1.8823e+00, -7.6746e-01, 9.9051e-02, -4.2125e-01, -1.9526e-01,
4.0071e+00, -1.8594e-01, -5.2287e-01, -3.168le-01, 5.9213e-04,
7.4449e-03, 1.7778e-01, -1.5897e-01, 1.2041e-02, -5.4223e-02,
-2.9871e-01, -1.5749e-01, -3.4758e-01, -4.5637e-02, -4.4251e-01,
1.8785e-01, 2.7849e-03, -1.8411e-01, -1.1514e-01, -7.8581e-017,
dtype=float32)
>>> wv[v['the']].shape
(50,)

We can also lookup an entire sentence in a single go getting back a dense matrix of [tokens, embeddings]
which is perfect for downstream machine leaning applications like the input to neural networks.

] for t in "the quick brown fox".split()]]

1800e-01, 2.4968e-01, -4.1242e-01, 1.2170e-01, 3.4527e-01,
.4457e-02, -4.9688e-01, -1.7862e-01, -6.6023e-04, -6.5660e-01,
.7843e-01, -1.4767e-01, -5.5677e-01, 1.4658e-01, -9.5095e-03,

>>> wv[[vI[t
[4.
-4
2
1.1658e-02, 1.0204e-01, -1.2792e-01, -8.4430e-01, -1.2181e-01,
-1
-1
4
7

array ([

.6801e-02, -3.3279e-01, -1.5520e-01, -2.3131e-01, -1.9181e-01,
.8823e+00, -7.6746e-01, 9.9051e-02, -4.2125e-01, -1.9526e-01,
.0071e+00, -1.8594e-01, -5.2287e-01, -3.1681le-01, ©5.9213e-04,
.4449%e-03, 1.7778e-01, -1.5897e-01, 1.2041e-02, -5.4223e-02,
-2.9871e-01, -1.5749e-01, -3.4758e-01, -4.5637e-02, -4.4251e-01,

1.8785e-01, 2.7849e-03, -1.8411le-01, -1.1514e-01, -7.8581le-017,
[1.3967e-01, -5.3798e-01, -1.8047e-01, -2.5142e-01, 1.6203e-01,
-1.3868e-01, -2.4637e-01, 7.5111le-01, 2.7264e-01, 6.1035e-01,
-8.2548e-01, 3.8647e-02, -3.236le-01, 3.0373e-01, -1.4598e-01,
-2.3551e-01, 3.9267e-01, -1.1287e+00, -2.3636e-01, -1.0629e+00,
4.6277e-02, 2.9143e-01, -2.5819e-01, -9.4902e-02, 7.9478e-01,
-1.2095e+00, -1.0390e-02, -9.2086e-02, 8.4322e-01, -1.1061e-01,
3.0096e+00, 5.1652e-01, -7.6986e-01, 5.1074e-01, 3.7508e-01,
1.2156e-01, 8.2794e-02, 4.3605e-01, -1.5840e-01, -6.1048e-01,
3.5006e-01, 5.2465e-01, -5.1747e-01, 3.4705e-03, 7.3625e-01,
1.6252e-01, 8.5279e-01, 8.5268e-01, 5.7892e-01, 6.4483e-01],
[-8.8497e-01, 7.1685e-01, -4.0379e-01, -1.0698e-01, 8.1457e-01,
1.0258e+00, -1.2698e+00, -4.9382e-01, -2.7839%9e-01, -9.2251e-01,

(continues on next page)

24 Chapter 5. Word Vectors

word-vectors, Release 4.0.0

(continued from previous page)

-4.9409e-01, 7.8942e-01, -2.0066e-01, -5.7371e-02, 6.0682e-02,
3.0746e-01, 1.3441e-01, -4.9376e-01, -5.4788e-01, -8.1912e-01,
-4.5394e-01, 5.2098e-01, 1.0325e+00, -8.5840e-01, -6.5848e-01,
-1.2736e+00, 2.3616e-01, 1.0486e+00, 1.8442e-01, -3.9010e-01,
2.1385e+00, -4.5301e-01, -1.6911e-01, -4.6737e-01, 1.5938e-01,
-9.5071e-02, -2.6512e-01, -5.6479e-02, 6.3849e-01, -1.0494e+00,
3.7507e-02, 7.6434e-01, -6.4120e-01, -5.9594e-01, 4.6589e-01,
3.1494e-01, -3.4072e-01, -5.9167e-01, -3.1057e-01, 7.3274e-01],
[4.4206e-01, 5.9552e-02, 1.5861le-01, 9.2777e-01, 1.8760e-01,
2.4256e-01, -1.5930e+00, -7.9847e-01, -3.4099e-01, -2.4021e-01,
-3.2756e-01, 4.3639e-01, -1.1057e-01, 5.0472e-01, 4.3853e-01,
1.9738e-01, -1.4980e-01, -4.6979e-02, -8.3286e-01, 3.9878e-01,
6.2174e-02, 2.8803e-01, 7.9134e-01, 3.1798e-01, -2.1933e-01,
-1.1015e+00, -8.0309e-02, 3.9122e-01, 1.9503e-01, -5.9360e-01,
1.7921e+00, 3.8260e-01, -3.0509e-01, -5.8686e-01, -7.6935e-01,
-6.1914e-01, -6.1771e-01, -6.8484e-01, -6.7919e-01, -7.4626e-01,
-3.6646e-02, 7.8251e-01, -1.0072e+00, -5.9057e-01, -7.8490e-01,
-3.9113e-01, -4.9727e-01, -4.2830e-01, -1.5204e-01, 1.5064e+0017,
dtype=float32)
>>> wv[[v[t] for t in "the quick brown fox".split()]].shape
(4, 50)

5.3.1 Reading

Reading is most often done with the word_vectors.read.read function. We can use the word_vectors.
FileType argument to specify a specific format to read the file as or we can let the code infer the format for itself
(you can also use one of the format specific readers to read a certain file format. The read API is very simply just pass
in the file name.

>>> from word vectors.read import read

Read where the format is determined by sniffing
w, read ("/path/to/vector-file")

from word vectors import FileType

Read using the binary Word2Vec format

v, read ("/path/to/vector-file", FileType.W2V)
from word vectors.read import read_leader

Read leader formatted vectors

read_leader ("/path/to/leader-vector-file")

>>>
wv =
>>>
>>>
.. wv =
>>>
>>>

v, WV =

You can also use the _with_vocab version of all the reader function to only read a subsection of the vocabulary.
Below we can see an example. First we read the full vocabulary from the file. We can see that is has the string
representations of numbers from zero for fourteen. We can see the vectors for several tokens. Then we create a user
vocabulary that only has the even numbers, and we re-read the vectors with this vocab. We see that we have now only
read in a subset of the word and that our vocab is in the same order that we passed in. We can also see the vectors
for a word haven’t changed. Finally we re-read the vectors again but this time we ask for it to keep the vectors in the
pre-train vocabulary that are not present in our vocab using keep_extra=True. We can see the indices from our
user vocabulary have not changed but we get the full vocabulary back with the extra words appearing at the end.

>>> from word vectors import read, read_with_vocab

>>> v, wv = read("leader.bin")

>>> v

{‘o': 0, '2': 1, '2': 2, '3': 3, '4': 4, '5': 5, '6': 6, '"7': 7, '8': 8, '9': 9, '1l0
—': 10, '11': 11, '12': 12, '13': 13, '14': 14}

>>> wv[v["4"]]

(continues on next page)

5.3. Usage 25

word-vectors, Release 4.0.0

(continued from previous page)

array ([(4., 4., 4., 4., 4., 4., 4., 4., 4., 4., 4., 4., 4., 4., 4., 4., 4.,
4., 4., 4.1, dtype=float32)

>>> wv [v["13"]]

array([(13., 13., 13., 13., 13., 13., 13., 13., 13., 13., 13., 13., 13.,
3., 13., 13., 13., 13., 13., 13.], dtype=float32)

>>> wv.shape

(15, 20)

>>> user_vocab = {k: i for i, k in enumerate(k for k, x in v.items() if x % 2 == 0)}

>>> user_vocab

{'o': 0, '2': 1, '4': 2, '6': 3, '8': 4, '10': 5, '12': 6, '14': 7}

>>> v, wv = read_with_vocab("leader.bin", user_vocab)

>>> v

{'o': 0, '2': 1, '4': 2, '6': 3, '8': 4, '10': 5, '12': 6, '14': 7}

>>> wv[v["4"]]

array([4., 4., 4., 4., 4., 4., 4., 4., 4., 4., 4., 4., 4., 4., 4., 4., 4.,
4., 4., 4.1, dtype=float32)

>>> wv.shape

(8, 20)

>>> v, wv = read_with_vocab ("leader.bin", user_vocab, keep_extra=True)

>>> v

{'o': 0, '2':1, '4': 2, '6': 3, '@': 4, '10': 5, '12': 6, '14': 7, '1': 8, '3': 9, '5

—': 10, '7': 11, '9': 12, '11': 13, '13': 14}

>>> wv[v["4"]]

array ([4., 4., 4., 4., 4., 4., 4., 4., 4., 4., 4., 4., 4., 4., 4., 4., 4.,
4., 4., 4.1, dtype=float32)

>>> wv([v["13"]]

array([(13., 13., 13., 13., 13., 13., 13., 13., 13., 13., 13., 13., 13.,
13., 13., 13., 13., 13., 13., 13.], dtype=float32)

>>> wv.shape

(15, 20)

5.3.2 Writing

Writing similarly has a main word_vectors.write.write function that dispatches on the word_vectors.
FileType argument and there are format specific writers if you want to use those instead.

>>> from word vectors.read import read
v, read (" /path/to/vectors™)

from word vectors import FileType

>>>
>>>

wv

>>> from word vectors.write import write
>>> write ("/path/to/vectors.leader", v, wv, FileType.LEADER)
>>> write ("/path/to/vectors.w2v", v, wv, FileType.W2V)

>>> write_glove (" /path/to/vectors.glove",

v, WvV)

26

Chapter 5. Word Vectors

word-vectors, Release 4.0.0

5.3.3 Converting

Conversions also have a general function (word_vectors.convert.convert) dispatching on
word_vectors.FileType and specific functions for converting between certain pairs.

>>> from word vectors import FileType
>>> from word vectors.convert import convert
>>> # Conversion to w2v via sniffing the original file
convert ("/path/to/vectors"”, output="/path/to/vectors.w2v", output_file_
—type=FileType.W2V)
>>> # Conversion to w2v with an explicit input type
convert (
"/path/to/vectors.glove",
output="/path/to/vectors.w2v",
output_file_type=FileType.w2v,
input_file_type=FileType.GLOVE
)
>>> # Converting between specific formats
>>> from word vectors.convert import w2v_text_to_w2v
w2v_text_to_w2v ("/path/to/vectors.w2v-text", output="/path/to/vectors.w2v")

5.4 Indices and tables

* genindex
* modindex

e search

5.4. Indices and tables 27

word-vectors, Release 4.0.0

28 Chapter 5. Word Vectors

w

word_vectors, 5

word_vectors.
word_vectors.
word_vectors.
word_vectors.

convert, 14
read, 6
utils, 16
write, 13

PYTHON MODULE INDEX

29

word-vectors, Release 4.0.0

30 Python Module Index

B

bookmark () (in module word_vectors.utils), 17

C

convert () (in module word_vectors.convert), 14
create_output_path () (in module
word_vectors.utils), 17

F

FASTTEXT (word_vectors.FileType attribute), 5
FileType (class in word_vectors), 5
find_space () (in module word_vectors.utils), 16
FLOAT_SIZE (in module word_vectors), 6

from_string/() (word_vectors.FileType class
method), 5

GLOVE (word_vectors.FileType attribute), 5

glove_to_leader () (in module

word_vectors.convert), 15
glove_to_w2v () (in module word_vectors.convert),
15
glove_to_w2v_text ()
word_vectors.convert), 16

(in module

INT_SIZE (in module word_vectors), 5
is_binary () (in module word_vectors.utils), 16

L

LEADER (word_vectors.FileType attribute), 5
LEADER_HEADER (in module word_vectors), 6
LEADER_MAGIC_NUMBER (in module word_vectors), 6
leader_to_glove () (in module
word_vectors.convert), 16
leader_to_w2v () (in module word_vectors.convert),
16
leader_to_w2v_text ()
word_vectors.convert), 16
LONG_SIZE (in module word_vectors), 6

(in module

INDEX

M

module
word_vectors, 5
word_vectors.convert, 14

word_vectors.read, 6
word_vectors.utils, 16
word_vectors.write, 13

N

NUMBERBATCH (word_vectors.FileType attribute), 5

R

read () (in module word_vectors.read), 6

read_glove () (in module word_vectors.read), 8

read_glove_with_vocab () (in module
word_vectors.read), 8

read_leader () (in module word_vectors.read), 11

read_leader_header () (in module
word_vectors.read), 12
read_leader_with_vocab () (in module

word_vectors.read), 11
read_w2v () (in module word_vectors.read), 10
read_w2v_text () (in module word_vectors.read), 8

read_w2v_text_with_vocab () (in module
word_vectors.read), 9
read_w2v_with_vocab () (in module

word_vectors.read), 10
read_with_vocab () (in module word_vectors.read),
7

S

sniff () (in module word_vectors.read), 12

T

to_vocab () (in module word_vectors.utils), 17

U

uniform_initializer ()
word_vectors.utils), 17

(in module

Vv

Vectors (in module word_vectors), 5

31

word-vectors, Release 4.0.0

verify_leader () (in module word_vectors.read), 12
Vocab (in module word_vectors), 5

W

W2V (word_vectors.FileType attribute), 5
W2V_TEXT (word_vectors.FileType attribute), 5

w2v_text_to_glove () (in module
word_vectors.convert), 15

w2v_text_to_leader () (in module
word_vectors.convert), 15

w2v_text_to_w2v () (in module

word_vectors.convert), 15
w2v_to_glove () (in module word_vectors.convert),

15

w2v_to_leader () (in module word_vectors.convert),
14

w2v_to_w2v_text () (in module

word_vectors.convert), 15
word_vectors
module, 5
word_vectors.convert
module, 14
word_vectors.read
module, 6
word_vectors.utils
module, 16
word_vectors.write
module, 13
write () (in module word_vectors.write), 13
write_glove () (in module word_vectors.write), 13
write_leader () (in module word_vectors.write), 14
write_w2v () (in module word_vectors.write), 14
write_w2v_text () (in module word_vectors.write),
13

32

Index

	Using pip
	From source
	Local Development
	Building the Docs

	API
	word_vectors
	word_vectors.read
	word_vectors.write
	word_vectors.convert
	word_vectors.utils

	Getting Help
	Word Vectors
	What are Word Vectors?
	Supported File Formats
	Usage
	Indices and tables

	Python Module Index
	Index

